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Abstract — Adopting an integral representation of the 
scalar potential due to the double layer charge σd, we derive a 
boundary integral equation (BIE) with one unknown to solve 
magnetostatic problems. Since σd produces only the potential 
gap without disturbing the normal magnetic flux density, the 
field is accurately formulated even with one unknown. The 
BIE is capable of treating robustly geometrical singularities at 
edges and corners. In this paper, we study how to evaluate the 
field at a vertex such as sharp edges and corners. 

I. INTRODUCTION 
When we adopt the volume integral equation approach 

[1] so as to formulate the scalar potential φB that gives the 
magnetic flux density B as B=-grad(φB), we get a boundary 
integral equation (BIE) with the double layer charge σd as 
the state variable [2]. It seems there are several advantages 
over the conventional BIEs [3], [4] derived from the scalar 
potential φH, that gives the magnetic field H as H=-
grad(φH), but only a few papers have been reported. 
Enforcing the boundary condition of the continuity of the 
tangential component of H, we derive a BIE with one 
unknown σd. Scalar potential formulation is computational-
ly attractive but has fatal drawbacks due to the multi-valued 
function of exciting potential by current sources. By 
introducing a fictitious loop current to represent an all-
purpose exciting potential, the BIE becomes applicable to 
generic problems. This paper presents how to utilize the 
BIE derived for evaluating B at the vertex. 

The double layer charge σd is equivalent to φB that is 
definite and smoothly distributed even if the fields become 
infinite. Once σd is determined, B is evaluated with the help 
of Biot-Savart’s law because σd is also equivalent to the 
loop current [3]. Therefore, it is expected that σd is capable 
of evaluating B at a vertex such as sharp edges and corners, 
where B approaches occasionally infinity. 

II. FORMULATION OF MAGNETOSTATIC FIELD 
In the volume integral equation approach, a magnetic 

material with the surface S and volume V is replaced by 
fictitious current and charge [1]. The potential φM at an 
observation point Po due to the magnetization M is given as 
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where the subscript P denotes the value at Po, r is the 
distance from an integral point Pi to Po, M is defined as 

M=B-μ0H with the magnetic filed H and flux density B and 
the magnetic permeability μ0 of free space, and mv and MS 
are called the volume and surface charges defined as 

M⋅−∇=vm , nM⋅=sM  with the unit outward normal n. 
Here, we assume that the magnetization property is linear, 
that is 0=⋅∇ M , and derive a BIE to evaluate B at vertices. 
The concept of magnetic shell [3], which is composed of 
the double layer charges σd, suggests that φMs could be 
replaced by the potential due to σd. Taking this concept into 
account and assuming mv=0, we get the total potential φB as 
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where φBe is the potentials at Po produced by the exciting 
source, r is the distance from an integral point Pi on S to Po 
and ns is the unit outward normal at Pi. 

The potentials on the surfaces with the subscripts o and i 
denoting the outer and inner sides are given as 
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where Ω is the solid angle subtended at the singular point 
Po on the surface S [5]. Applying the boundary condition of 
the continuous condition of the tangential magnetic field to 
(3) and (4), we derive a BIE as 
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where μr is defined as μr=μ/μ0=|BBi|/|μ0Hi| and φBe is given by 
the potential φBc due to the coil current Ic and the potential 
φBf due to the fictitious loop current If (usually If=Ic) as 
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with the solid angle Ωc subtended at Po by the surface Sc 
surrounded by Ic and Ωf subtended by the cross section Sf of 
magnetic core cut by Sc. If Sc doesn’t cut the core, Ωf=0. 

III. EVALUATION OF MAGNETIC FLUX DENSITY 

Once the distribution of σd has been obtained, B is 
evaluated with the help of Biot-Savart’s law because σd is 
equivalent to the loop currents Jl. The surface element is 
divided further into the sub-elements as shown in Fig. 1, 
where the solid lines are for the original surface element 
and the broken lines are for the sub-element to evaluate B. 
The calculating points Po for obtaining σd1-σd4 have been 
set at the point shown by ○. We set points Pe shown by ♦ at 
the center of the sub-elements surrounded by the solid and 



1. Static and Quasi-Static Fields 

dotted lines and σde at Pe is interpolated with these σd as 
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where the shape function Ni is given as 
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with the local coordinates x and y at Pe and the side lengths 
a and b of the surface element. Then the loop current is 
introduced so as to circulate anticlockwise along the 
contour of the sub-element as shown by the arrows in the 
figure. Employing these loop currents, the total magnetic 
flux density B at Po is given as follows. 
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where NJ is the total number of Jl that equals to the number 
of σd, the uJ is the direction of Jl, which circulates 
anticlockwise along the contour of σd, ΔL is the length of Jl, 
and rL is the distance from Pi along Jl to Po. 

Eq. (8) is applicable to evaluate B at any point except on 
the surface. Even on the surface, (8) is capable of 
evaluating the normal component BBn by setting the 
calculating point Pe at the center of the sub-element as 
shown in Fig.1, but incapable of doing the tangential 
component BtB . Since there is a gap ΔBBt between the inner 
and outer BtB , we take the ΔBBt into account and get BtB  as 
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where BBs is B on the surface and evaluated by (8). When 
we evaluate B at a vertex, we set one loop current Jl on the 
surface elements, where one of the element corners joins at 
the vertex indicated by ● as shown in Fig. 1. 
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Fig.1 Subdivisions for evaluating B at ♦ on flat surface and ● at vertex. 

IV. NUMERICAL VALIDATION OF PROPOSED APPROACH 

We shall solve a magnetostatic problem with a cubic 
magnetic block (10x10x10 cm3) placed in the uniform 
magnetic field Heo of 1 T. The relative permeability μr is 
1000, and the direction of Heo is perpendicular to the block 
surface. The z-axis is set parallel to Heo and the origin of 
axes is at a corner of the bottom surface of the block. The 
material surface is divided equally into Ne=6N2. Employing 
the linear surface element in discretization of (5), we obtain 
σd at the node point shown by ○ and ● in Fig.1, and 
evaluate B by using (8). Fig.2 shows the computed results 

of B near the edge at x=0.2 cm and y=0.2 cm along the z-
axis. The subscripts x, y and z, attached to B denote the 
components of B, and BBx=ByB . As approaching the corners, B 
evaluated by the proposed method increases sharply. 
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Proposed method 
V: N=10, Δ: N=20 
Moment method 
x: N=10, +: N=20 

Proposed method
V: N=10, Δ: N=20
Moment method 
+: N=10, x: N=20

Fig.2 Computed results of magnetic flux density along z-axis at x, y=0.2 
cm. The solid lines denote the results by the magnetic moment method [6] 
with meshes fine enough. 

V. CONCLUSIONS 

We have derived a BIE with the double layer charge as 
the state variable. Even if the BIE contains only one 
unknown, the solution fulfills completely the boundary 
condition and is expected to be accurate. The solution of 
the BIE gives directly the potential distribution. The 
potential is equivalent to the double layer charge and also 
the loop current. Therefore, once the double layer charges 
have been obtained, they give directly the magnetic flux 
density by virtue of Biot-Savart’s law. We have evaluated 
the magnetic flux density near the edge of a magnetic block 
and confirmed that the evaluation is adequate. It is expected 
that the proposed method is capable of evaluating easily the 
fields at any points including the edge and corner. 
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